Ihre Vorteile im Überblick
Mit einer Registrierung bei myWIFI können Sie Ihre Kontaktdaten und Ihr Profil ändern und jederzeit einen Überblick über Ihre WIFI-Kurse und Prüfungsergebnisse abrufen.
LOGIN / REGISTRIERUNG
Link kopieren
Link kopiert
Warum Emotion im Lernprozess so wichtig ist und weshalb er im Mathematik-Unterricht am liebsten mit offenen Aufgaben arbeitet, verrät Mag. (FH) Walter Blaha heute im Lerntipp des Monats. Im Rahmen dieser Serie können Sie sich auf dem WIFI Blog regelmäßig Tipps von unseren Profis abholen und unsere Trainerinnen und Trainer näher kennenlernen.
Was war Ihre interessanteste Erkenntnis zum Thema Lernen in den vergangenen Jahren?
Am WIFI-Trainerkongress 2015 hat sich mir ein Satz von Prof. Dr. John Erpenbeck eingeprägt, den ich mir immer wieder gerne vor Augen führe: „Kompetenz kann als emotional imprägniertes Wissen definiert werden“. Dies bedeutet, dass Wissen alleine noch keine Kompetenz ist, denn man kann bekanntlich viel wissen aber nichts können. Der Qualifikation und dem Wissen fehlen oft das Erleben in der erfolgreichen Anwendung – erfolgreiches Lernen und ein damit verbundener Kompetenzerwerb benötigt daher unbedingt Emotion, um die innere Beteiligung und damit die Motivation der Lernenden zu wecken!
Was bedeutet LENA für Sie und wie setzen Sie das in Ihren Trainings um?
LENA bedeutet für mich unter anderem die Umkehr vom lehrer- zum lernerzentrierten Unterricht: Die Lernenden sollten wieder in den Mittelpunkt des Geschehens gerückt werden und nicht der Vortragende mit einem Frontalvortrag. Als Konsequenz versuche ich, vermehrt an Vorwissen anzuknüpfen, Realitäts- bzw. Praxisbezüge herzustellen und im Zuge von Arbeitsaufträgen, die ein selbständiges Handeln auslösen, zum Nachdenken und Ausprobieren anzuregen.
Was ist Ihr persönlicher Lieblingstipp?
Um dem Anspruch der Lernerzentrierung auch im Mathematik-Unterricht gerecht zu werden, bietet sich die Anwendung von offenen Aufgaben an. Offene Aufgaben, die von mehreren Seiten gelöst werden können, ermöglichen dem Lernenden individuelle Zugänge, eigene Bearbeitungsstrategien und verschiedene Abstraktionsgrade in den Lösungen. Damit kann der Lernende die Materie oft deutlich besser verstehen, da bei offenen Aufgaben auch eigene Praxisbezüge mit eingebracht werden können und der Lernende damit einen individuellen Lösungsweg mit einer Verknüpfung zur eigenen Berufspraxis erstellen kann. Der Teilnehmer/die Teilnehmerin ist somit nicht in ein starres Lösungskonzept gepresst, sondern kann selbständig die von ihm/von ihr präferierte Herangehensweise wählen und das jeweilige Beispiel nach seinen/ihren Vorstellungen lösen.
Bildcredits: (c) Sonya illustration/Shutterstock.com